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Abstract

A Michelson interferometer is applied to a mode I fracture mechanic problem to investigate the out-of-plane

displacement near the crack tip. For an elastic cracked plate, it appears that the two-dimensional theory predicts
correctly the free-stress surface displacement only in a region greater than half the specimen thickness. Combining
this two-dimensional solution and the measurements provided by the interferometer, the out-of-plane displacement
is likewise accessible inside the previous region where the state of stress is three-dimensional. A mathematical

formulation, using an exponential integral function is then proposed to describe the out-of-plane surface
displacement in the measurement area around the crack tip. 7 2000 Elsevier Science Ltd. All rights reserved.
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1. Introduction

In recent years, many studies have been attempted to understand the mechanical behavior of cracked
elastic plates, under di�erent loading conditions. Such plates constitute elements of more complex and
various elastic structures. Accounting for geometrical singularities like edges or cracks is of great
importance in many engineering practices.

Although a realistic mechanical response of these structures, undergoing small displacements, is
governed by the equations of the three-dimensional linear elasticity, some simplifying assumptions were
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made, in the past, to approach this problem. If a two-dimensional view point is therefore adopted, many
studies have been performed to determine displacement and stress ®elds in the neighborhood of the
crack tip. Two-dimensional analytical or numerous solutions are moreover available in the literature for
plates with moving or stationary cracks of arbitrary shapes (Williams, 1957; Hartranft and Sih, 1977;
Bazant and Estenssoro, 1979).

Based on a generalized plane stress theory, in the case of a thin elastic plate which is subjected to in-
plane loading, the stresses along the crack front have the well-known inverse square root singularity
(Eftis et al., 1977; Sneddon and Lowengrub, 1969). This approximate stress ®eld gives rise to a lateral
contraction of the plate which is unbounded. The out-of-plane displacement tends thus to in®nity as the
distance from the crack tip tends to zero.

Concurrently, experimental studies of fracture mechanics extended their scope using optical methods
such as photoelasticity, holography, shadow method, interferometry. These experimental methods, have
in some case used and validated the previous theoretical solutions. They have also shown the limitations
of the two-dimensional approach. It is specially true for the singular expression of the out-of-plane
displacement at the crack tip, which is not, in this fact, in a position to represent a realistic physical
quantity very near the crack tip. Twelve years ago, using the method of caustics by re¯ection, Rosakis
and Ravi-Chandar suggested that a two-dimensional ®eld prevails at a distance from the crack tip
greater than half the specimen thickness.

Some researchers have jointly investigated the fully three-dimensional stress ®eld arising near the
intersection of the crack surfaces and the stress-free border of an elastic plate. Probably due to the
abrupt change of boundary conditions at this point (called vertex) and the complex treatment following,
few interesting solutions exist for the associated out-of-plane displacement ®eld (Burton et al., 1984;
Yang and Freund, 1985). Recently, using Nakamura and Parks numerical results (Nakamura and Parks,
1988), Pfa� et al. have given a mathematical expression for the elastic out-of-plane displacement, which
insures a smooth transition to the solution obtained with the generalized plane stress theory (Pfa� et al.,
1995). Comparisons have been made afterwards between contour plots of the theoretical form proposed
and Michelson interferograms of the out-of-plane surface displacement.

In our paper, the static out-of-plane displacement surface of a plate near the crack tip is evaluated
experimentally using Michelson interferometry applied to fracture mechanics in conjunction with
theoretical results of the two-dimensional theory. The specimen is loaded in such a way that only mode
I loading occurs. This work is moreover limited to plates constituted of elastic and isotropic material. A
mathematical formulation including exponential integral functions is then proposed in Section 3 to
describe the displacement surface. Comparisons between the previous form and the experimental data
are ®nally performed in the last section.

2. Experimental considerations

For experimental investigations, Michelson interferometer (Born and Wolf, 1980) shown in Fig. 1 is
required. A Plexiglas plate, of thickness 8 mm and large in-plane dimensions is used in this experimental
set-up. The plate of width 160 mm and height 270 mm contains, through the thickness, a crack of
length 60 mm in the middle of the larger side. The specimen is then subjected, at the ends, to a uniform
tension normal to the crack plane. For a good re¯ection of light, the in front surface is covered with a
thin aluminum layer (of thickness less than 30 nm). This layer is achieved by putting the undeformed
specimen in a vacuum chamber, in which a device vaporizes an aluminum wire onto the specimen faces.

With regard to the interferometer, coherent light from an extended source S is divided at the
beamsplitter B into two beams at right angles. They are respectively re¯ected at a plane mirror M and
the specimen surface, and return to B where they are recombined, to be ®nally recorded further at C by
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a CCD camera of su�cient capability. If the di�erence of optical path between the emergent beams at C
is less than the coherent length of the laser (about 3 cm) interference fringes are observed on the
monitor screen. In practice, this is achieved when the distance between the virtual surface M ' and the
specimen is less than the coherent length of the laser. M ' represents here the symmetrical image of M
about B.

The interference pattern provides information at one and the same time, on the surface pro®le of the
specimen and on the orientation of this surface with respect to the mirror M. Generally for an
undeformed surface, in the experimental conditions mentioned before, straight line fringes appear indeed
on the screen. In fact, the two phenomenon are coupled and the analysis of the interference fringes
doesn't give directly the contraction of the specimen surface resulting from the in-plane loading alone.
This point will be discussed, in detail, in the next section. (Fig. 2) presents an interferogram of the
surface of the loaded specimen realized near the crack tip. The studied area measures approximately 20
mm square and every fringe represents a 257 nm change in elevation. A zoom of the previous image is
shown in Fig. 3.

To analyze the fringes, a software, developed in our Laboratory, based on a phase shifting method
(Mauvoisin et al., 1991) has been used. According to this method, three recorded images of the
interference pattern with di�erent phase shifting are su�cient to determine the pro®le of the surface
plate. Phase shifting is realized from a control device acting on a piezoelectric actuator where the plane
mirror M is mounted. Figs. 4 and 5 provide the result of the calculation applied to images similar to
these respectively shown in Figs. 2 and 3. The di�erent gray levels indicate the surface pro®le. In the

Fig. 1. Michelson interferometer applied to fracture mechanic.
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two cases, white areas, which correspond to areas where the fringes are most closely spaced, are points
where the calculation is not realized. However, in order to collect information contained in the white
area of the large ®eld (Figs. 2 and 4) an enlargement of this ®eld can be performed (Fig. 3) with an
adapted lens in front of the CCD camera. The size of the resulting white area (Fig. 5) is then
considerably reduced. This practical solution gives the advantage that it does not disturb the
interferometric set-up.

3. Out-of-plane displacement determination

3.1. Examination of the experimental measurements

As seen before, the unknown out-of-plane displacement ®eld cannot be reached directly by the data
calculated with the software. In fact, they implicitly include the unknown position of the surface plate
with respect to the mirror M. For this in the following analysis, the equation of a so-called reference
plane, with unknown coe�cients, is introduced.

Let us consider now a reference coordinate system (x, y, z ) with its origin at the vertex (i.e. the
intersection between the crack front and the free-stress border of the plate). The x±y plane corresponds
to the free-stress border of the plate (with the x-axis in the continuation of the crack), and the crack
front coincides with the z-axis. If the associated cylindrical coordinates (r, y, z ) are rescaled according

Fig. 2. An interferogram of the out-of-plane surface displacement near the crack tip.
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to:

�R, y, z� � �r=t, y, z� �1�
where t is the plate thickness, the position of the reference plane, in this new system �R, y, z� is then
represented by:

uref�R, y� � z � pxR cos�y� � pyR sin�y� � u0 �2�
The parameter px and py introduced in Eq. (2) denote respectively, the plane slope with regard to x-axis
and y-axis in the coordinate system �R, y, z�: A translation of the reference plane normal to the x±y
plane is given by a third parameter u0.

We assume that in-plane dimensions of the plate are su�ciently large in such a way that a region of
essentially two-dimensional plane stress K-®eld exists outside a near-crack- front three-dimensional ®eld.
For such a plate, according to Rosakis (Rosakis and Ravi-Chandar, 1986), a state of generalized plane
stress is achieved in a region where R > 0:5: The two-dimensional solution is generally expressed by a
series expansion (Williams series) about the crack tip. The ®rst term (singular term) corresponds then to
the small-scale yielding solution (i.e. the K-®eld) classically used in a su�ciently small neighborhood of
the crack tip. Following the study of Unger (Unger, 1995) about the di�erences between exact linear
elastic solutions and small-scale yielding solutions for crack problems, an estimate of the size of this
``K-dominant'' region can be rationally given by:

Fig. 3. Zoom of the image Fig. 2.
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r <
1

10
L �3�

where L represents the crack length. With the in-plane dimensions used for the cracked plate, the K-®eld
is supposed to be dominant if 0:5 < R < 0:8:

With the previous restrictions and for a mode I loading, the associated out-of-plane displacement is
then expressed in the system �R, y, z� by the expression:

upl stress�R, y� � z � nKt0:5cos�y=2�
E

���������
2pR
p �4�

where K is the mode I plane stress intensity factor considered here as a parameter. E represents the
Young's modulus and n the Poisson's ratio.

The material of the plate is characterized by a yield stress sys, above which it deforms plastically. In
other words, there is always a region around the tip of the crack where plastic deformation occurs. With
the nondimensional radius Rp, the extent of the plastic zone as a function of y is given here by (Broek,
1982):

Rp �
K 2

�
1� 3

2
sin2 y� cos y

�
4ps2

yst
�5�

Fig. 4. Result of the calculation for the images similar to the image Fig. 2.
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When 0:5 < R < 0:8, expressions (2) and (4) are ®nally related to the experimental out-of-plane
displacement in this way:

uexp�R, y� � upl stress�R, y� � uref�R, y� �6�
The task is now to determine the four parameters introduced in the right-hand side of Eq. (6). By
choosing a set of radii R 2�0:5; 0:8�, say M1, for an angle y1 2�0; p�, a vector B1 with M1 elements
uexp�Ri, y1� is created �i � 1, . . . ,M1�: Corresponding to the vector B1, a matrix A1 with M1 � 4 elements
is obtained by using the right-hand side of Eq. (6). If this procedure is repeated with N angles yj linearly
distributed in the range �0; p�, a set of N vectors Bj and N matrix Aj are available �j � 1, . . . ,N �: The
previous sub-vectors Bj and sub-matrix Aj are then joined to form respectively, a vector B � �B1, B2,
B3, . . . ,BN�T, with M � �PN

j�1Mj � elements and an associated matrix A containing M� 4 elements:

A �

0BBBB@
A1

A2

A3

� � �
AN

1CCCCA
The problem is thus reduced to solve the following overdetermined linear system:

AX � B �7�

Fig. 5. Corresponding calculation for the zoomed image Fig. 3.
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where X is the unknown vector containing the four parameters px, py, u0 and K. The solution of the set
of simultaneous Eq. (7), with N � 10, is shown in Table 1. In this case, M is equal to 785. In the
calculation, the numerical values used for the Young's modulus and the Poisson's ratio are respectively,
3 GPa and 0.37.

Moreover, taking 50 MPa for the yield stress and the numerical value calculated previously for K, Eq.
(5) allows us to estimate the size of the plastic region. With the nondimensional radius Rp, it is found
that the maximal extent of the inelastic region is equal to 0.0065 and is very small compared to the
elastic region. Fig. 6 gives a relative measure of the characteristic size of the elastic and plastic regions.

With the numerical values from Table 1 for the four parameters and the results given by the software,
the di�erence �uexp ÿ uref� is represented in Fig. 7 by small circles, for di�erent angles y: The plots with
continuous lines in the ®gure indicate the two-dimensional out-of-plane displacement for the same
angles. As expected, when R > 0:5, good agreement is observed between the two-dimensional
representation of the displacement and the corresponding plot of the expression �uexp ÿ uref�: In fact, one
notices that the di�erence �uexp ÿ uref� gives naturally the out-of-plane displacement due to the in-plane
loading, and this, in all the region surrounding the crack tip (i.e. when 0 < R < 0:8).

Table 1

Numerical values calculated for the parameters of the reference plane and the mode I plane stress intensity factor

px (mm) py (mm) u0 (mm) K in MPa
��������
mm
p

ÿ0.00117 ÿ0.000163 ÿ9.82E-5 28.53

Fig. 6. Relative sizes of the elastic and plastic regions.
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3.2. Theoretical expression

The previous results will serve us now to give a mathematical representation of the three-dimensional
out-of-plane displacement near the crack tip. With the system �R, y, z� again, we propose to explain the
out-of-plane displacement �uexp ÿ uref� with the following equation:

u3d�R, y� � z � Kt0:5n
E

�
bEi

ÿ
2, a�y�R

�
� cos�y=2��1ÿ eÿcR � 1���������

2pR
p

�
�8�

where b, c are unknown constants and a�y� an unknown function of y: Ei is an exponential integral
function expressed explicitly as:

Ei�2, R� �
�1
1

eÿRt

t 2
dt, R > 0 �9�

Using mathematical properties of the exponential integral functions (EIF) (Abramowitz and Stegun,
1965), Eq. (8) insures a smooth transition to the out-of-plane displacement ®eld from the plane stress
approximation (see Eq. (4)). This is achieved practically when R > 0:5: In addition, EIF provide ®nite
values for the expression (8), when R tends to zero.

To determine the constants b, c and the function a�y�, the following system of equations is considered
for y � 0:

fi�a, b, c� � u3d�a, b, c, R � Ri, y � 0� ÿ �uexp ÿ uref ��R � Ri, y � 0� � 0, i � 1, . . . ,n �10�
where 0 < R1 < R2 < R3 < � � � < Rn < 0:8: Ri represent here the abscises of n points deriving from the
previous plot shown in Fig. 7 (when y is equal to 0). Thus, minimization methods like Newton method

Fig. 7. Evolution of the experimental out-of-plane displacement for di�erent angles y:
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can be applied to reach a local minimum of the function:

F�x� �
Xn
i�1

f 2
i �x�, x � a, b, c

With appropriate initial value, the method converges very well to a solution presented in Table 2. With
the knowledge of the coe�cients b and c, similar calculations are started again with the only unknown
coe�cients a, for di�erent angles y in the range � ÿ p, p� (see Table 3). Finally, using a classical
interpolation technique, it is found that the evolution of a�y� is represented by the following even
function of y, in the range � ÿ p, p�:

Table 2

Numerical values found for the parameters when y � 0

a(y � 0) b c

9.186 0.787 7.335

Table 3

Evolution of the parameter a for y 2 �0, p� (the values are the same in the range � ÿ p, 0�)

y (rd) 0 0.23 0.91 1.39 1.51 1.76 2.42 2.63 2.89

a�y� 9.18 8.98 8.43 7.68 7.40 6.97 5.44 4.68 4.06

Fig. 8. Representation of the theoretical expression (8) for di�erent angles y (continuous lines).

L. Humbert et al. / International Journal of Solids and Structures 37 (2000) 5493±55045502



a�y� � a1cos�y=2� � a2

a1 � 5:73

a2 � 3:32 �11�

It should be noted that the number of the points used and their positions in¯uence the values of the
previous parameters. In practice, we take the 25 closest points to the crack tip. With the values of
Table 2 for b and c, Eq. (8) combined with Eq. (11) give monotonic and bounded functions of R in the
range �0, 1�, 8y 2� ÿ p, p�: Such functions are represented in Fig. 8 for the angles y given in Table 3.
Good agreement is observed between the discrete values obtained before and the plot of the theoretical
form proposed in this section.

A simulation of fringes is performed by using the expression (6), in which Eqs. (8) and (11) take the
place of upl stress: Good agreement is observed in Fig. 9 between simulated and experimental fringes in
the region near the crack tip, thus validating the previous analysis.

Fig. 9. Simulation of interference fringes.
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4. Conclusion

An hybrid method combining interferometry with theoretical results of the two-dimensional theory is
presented to determine the out-of-plane displacement in the fully three-dimensional region near the
crack tip. This method is achieved for elastic cracked plates with in-plane dimensions su�ciently large to
allow the existence of a plane stress ®eld surrounding the three dimensional region. According to this
study, the global out-of-plane displacement ®eld uexp measured by interferometry results from the
orientation changing of the plate, described by a reference plane uref and the out-of-plane displacement
u3d only due to the in-plane loading (Poisson's e�ect). The equation of the plane is determined in such a
way to shift the experimental data, deriving from the interferometry, to the theoretical curves available
in the two-dimensional region. A new theoretical expression, using an exponential integral function, is
also proposed to describe the unadulterated out-of-plane displacement everywhere near the crack tip.

Finally, from the mathematical form of the global displacement ®eld, fringes are simulated and
compared to fringes obtained experimentally. As shown in Fig. 8, this new approach appears to predict
correctly, the out-of-plane displacement in all the region near the crack tip. Other tests should be
realized on other elastic materials to re®ne the parameters introduced in the previous equations. The
generality of the expression (8) for linear elastic mode I cracking problems should be then con®rmed.
An extension of this work is envisaged for crack problems under mixed mode I±mode II loading.
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